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teraction between the two ruthenium centers in the imidazolate 
case. This is valid if the electron mediation is accomplished 
with the x-bond system of the ligand. Imidazolate ion, however, 
can possibly make use of its c-bond system in a manner similar 
to halides and hydroxide ligands. The relatively fast net rate 
of electron transfer for -Ru1^Im-Co1"- (k = 6 ± 1 s_1) may 
be a result of such a mechanism. Note that the rate is faster 
than the rate of electron transfer in similar binuclear complexes 
with other bridging N-heterocyclic ligands that have been 
studied.17 The c-bond system of imidazolate anion can interact 
more effectively with a d-cr acceptor orbital as in cobalt(III) 
than can many pyridine-type heterocycles. The possible use 
of the -K- as well as the n-bond system of imidazolate anion 
renders it a versatile ligand which can interact with a- and 
7r-donor and -acceptor metal ion orbitals. 
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A Novel Functionalization of Prostaglandin 
Skeleton. Addition of Thallium Triacetate 
to PGF2a Methyl Ester 

Sir: 

According to synthetic strategies published to this date, the 
preparation of the highly potent antiaggregatory PGI2 and 
analogues starts with the electrophilic activation of the 5,6 
double bond of PGF2a (or equivalents) accompanied by the 
formation of the five-membered ring through participation of 
the 9-positioned OH (or SH) function. The cyclization was 
shown to proceed with various electrophilic agents, viz., I+, 
Br+, PhSe+, and Hg2+.1 The well-known electrophilic prop­
erties OfTl3+ and the ease with which C-Tl bonds are broken2 

have prompted us to test the applicability of Tl3+ as an elec­
trophilic agent in these processes. We have found that the re­
action of PGF2a methyl ester (1) with thallium triacetate 

proceeds with the participation of both C-9 and C-11 hydroxyl 
functions and leads to the formation of two novel dioxatricyclo 
systems, 2 and 3, hiterto unknown in prostaglandin chemistry. 
These products may be readily converted into other derivatives 
with the prostaglandin skeleton functionalized in position 7. 

Treatment of 1 with 3 molar equiv of thallium triacetate in 
acetic acid (90 mL/g of 1) at 25 0C for 24 h produced a 1:2.5 
mixture of 2 and 3. Chromatographic separation gave the pure 
substances (R/ 0.54 for 2 and R/ 0.28 for 3, 2:1 ethyl ace-
tate-hexane) as oils in 70-75% yields (overall from 1). Spectral 
data disclosed that the highly acid-sensitive 2 is isomerically 
pure, while the more polar product is a chromatographically 
nonseparable mixture of two isomers, 3a and 3b (~1:3). 

The structure and stereochemistry of these novel systems 
as shown were unambiguously proved by means of the IR and 
mass spectral2'3'4 data and careful analysis of the 1H and 13C 
spectra,5,6 aided by the evaluation of characteristics chemi­
cal-shift changes upon derivatization of 2 and 3a,b. Chemical 
transformations provided corroboration for the correctness of 
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structures 2 and 3a,b. Thus treatment of 2 in methanol with 
potassium carbonate at 25 0C for 2 h afforded the diol 4.7 The 
presence of an internal ketal moiety was evidenced by 
transketalization. Reaction of 2 with methanol in the presence 
of boron trifluoride etherate at 25 0C for 1 h gave 58-9 and 6.8 

Similar methanolysis of 3a,b at 25 0C for 15 min furnished the 
isomeric methyl ketals 7a,b8 which, using acetic anhydride-
pyridine at 25 0C for 30 min, were converted to 8a,b.8 The 
masked oxo function of 3a,b could be reduced by sodium bo-
bohydride in ethanol, yielding the readily separable isomeric 
triols 9a and 9b.8 

Formation of 2 and 3a,b upon the action of thallium tri­
acetate may be interpreted by assuming 10 as the intermediate, 
produced via formation of the 6,9a-oxido ring and a carbenium 
ion at C-5 after the heterolysis of the primary C-Tl bond, 
which is followed by hydride shift and the loss of a proton from 
C-6 or C-7. Occurrence of the highly unstable 10 in the enzy­
matic conversion of arachidonic acid by rat stomach homog-
enates has been reported recently by Sih et al.10 The reaction 
of an additional mole of thallium triacetate11 with the endo 
double bond, aided by the OH group at C-11 and the solvent 
molecules as nucleophiles, produces 212 and 3a,b simulta­
neously. This mechanism readily explains the stereochemistry 
at C-6 and C-7 in 2 and 3a,b. 

We believe that the underlying reactions may have impli­
cations also outside the prostaglandin field. 
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Biosynthesis of the Antitumor Antibiotic Pactamycin. 
A Methionine-Derived Ethyl Group and a C7N Unit­
s';/-; 

Pactamycin (1), an antibiotic isolated from Streptomyces 
pactum var. pactum,2* is one of the more potent cytotoxic 
agents in vitro, inhibiting KB cells at 0.003 Mg/mL (ID50), and 
it has in vivo activity against a number of mammalian tum­
ors.2b It is also active against gram-positive bacteria (MIC 0.8 

11 CH; 

jUg/mL vs. B. subtilis), though its toxicity213 prevents any 
clinical applications, and it has proved valuable as a bio­
chemical tool in studies of protein synthesis.3 In addition to its 
bioactivity the uniquely branched, multiply hydroxylated and 
aminated, cyclopentane ring4 is of considerable interest for its 
obscure biosynthetic origin. We report here that pactamycin 
is derived from a mixed biosynthetic pathway involving glu­
cose, acetate, and methionine. 

Administration of labeled precursors to a culture of 5. 
pactum (Table I) showed that L- [methyl- 14C] methionine was 
incorporated into pactamycin to the extent of 0.020%, while 
[carboxy -' 4C] acetate and D- [ 1 -' 4C] glucose were incorporated 
into pactamy§ate (2), which is coproduced in this medium, to 
the extent of 0.093 and 0.061%, respectively. Conversion of 
pactamycin labeled by [methyl-**4C]methionine to pactam-
ycate indicated loss of 40% of the label; thus, the TV-methyl 
groups are derived from methionine. 

Administration of 13C-labeled precursors was followed by 
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